26 research outputs found

    Dissemination of scientific software with Galaxy ToolShed

    Get PDF
    The proliferation of web-based integrative analysis frameworks has enabled users to perform complex analyses directly through the web. Unfortunately, it also revoked the freedom to easily select the most appropriate tools. To address this, we have developed Galaxy ToolShed

    The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2018 update

    Get PDF
    Galaxy (homepage: https://galaxyproject.org, main public server: https://usegalaxy.org) is a web-based scientific analysis platform used by tens of thousands of scientists across the world to analyze large biomedical datasets such as those found in genomics, proteomics, metabolomics and imaging. Started in 2005, Galaxy continues to focus on three key challenges of data-driven biomedical science: making analyses accessible to all researchers, ensuring analyses are completely reproducible, and making it simple to communicate analyses so that they can be reused and extended. During the last two years, the Galaxy team and the open-source community around Galaxy have made substantial improvements to Galaxy's core framework, user interface, tools, and training materials. Framework and user interface improvements now enable Galaxy to be used for analyzing tens of thousands of datasets, and >5500 tools are now available from the Galaxy ToolShed. The Galaxy community has led an effort to create numerous high-quality tutorials focused on common types of genomic analyses. The Galaxy developer and user communities continue to grow and be integral to Galaxy's development. The number of Galaxy public servers, developers contributing to the Galaxy framework and its tools, and users of the main Galaxy server have all increased substantially

    Community-Driven Data Analysis Training for Biology

    Get PDF
    The primary problem with the explosion of biomedical datasets is not the data, not computational resources, and not the required storage space, but the general lack of trained and skilled researchers to manipulate and analyze these data. Eliminating this problem requires development of comprehensive educational resources. Here we present a community-driven framework that enables modern, interactive teaching of data analytics in life sciences and facilitates the development of training materials. The key feature of our system is that it is not a static but a continuously improved collection of tutorials. By coupling tutorials with a web-based analysis framework, biomedical researchers can learn by performing computation themselves through a web browser without the need to install software or search for example datasets. Our ultimate goal is to expand the breadth of training materials to include fundamental statistical and data science topics and to precipitate a complete re-engineering of undergraduate and graduate curricula in life sciences. This project is accessible at https://training.galaxyproject.org. We developed an infrastructure that facilitates data analysis training in life sciences. It is an interactive learning platform tuned for current types of data and research problems. Importantly, it provides a means for community-wide content creation and maintenance and, finally, enables trainers and trainees to use the tutorials in a variety of situations, such as those where reliable Internet access is unavailable

    Inverting the model of genomics data sharing with the NHGRI Genomic Data Science Analysis, Visualization, and Informatics Lab-space

    Get PDF
    The NHGRI Genomic Data Science Analysis, Visualization, and Informatics Lab-space (AnVIL; https://anvilproject.org) was developed to address a widespread community need for a unified computing environment for genomics data storage, management, and analysis. In this perspective, we present AnVIL, describe its ecosystem and interoperability with other platforms, and highlight how this platform and associated initiatives contribute to improved genomic data sharing efforts. The AnVIL is a federated cloud platform designed to manage and store genomics and related data, enable population-scale analysis, and facilitate collaboration through the sharing of data, code, and analysis results. By inverting the traditional model of data sharing, the AnVIL eliminates the need for data movement while also adding security measures for active threat detection and monitoring and provides scalable, shared computing resources for any researcher. We describe the core data management and analysis components of the AnVIL, which currently consists of Terra, Gen3, Galaxy, RStudio/Bioconductor, Dockstore, and Jupyter, and describe several flagship genomics datasets available within the AnVIL. We continue to extend and innovate the AnVIL ecosystem by implementing new capabilities, including mechanisms for interoperability and responsible data sharing, while streamlining access management. The AnVIL opens many new opportunities for analysis, collaboration, and data sharing that are needed to drive research and to make discoveries through the joint analysis of hundreds of thousands to millions of genomes along with associated clinical and molecular data types

    Fast and accurate genome-wide predictions and structural modeling of protein–protein interactions using Galaxy

    No full text
    Abstract Background Protein–protein interactions play a crucial role in almost all cellular processes. Identifying interacting proteins reveals insight into living organisms and yields novel drug targets for disease treatment. Here, we present a publicly available, automated pipeline to predict genome-wide protein–protein interactions and produce high-quality multimeric structural models. Results Application of our method to the Human and Yeast genomes yield protein–protein interaction networks similar in quality to common experimental methods. We identified and modeled Human proteins likely to interact with the papain-like protease of SARS-CoV2’s non-structural protein 3. We also produced models of SARS-CoV2’s spike protein (S) interacting with myelin-oligodendrocyte glycoprotein receptor and dipeptidyl peptidase-4. Conclusions The presented method is capable of confidently identifying interactions while providing high-quality multimeric structural models for experimental validation. The interactome modeling pipeline is available at usegalaxy.org and usegalaxy.eu
    corecore